K-space polarimetry of bullseye plasmon antennas
نویسندگان
چکیده
Surface plasmon resonators can drastically redistribute incident light over different output wave vectors and polarizations. This can lead for instance to sub-diffraction sized nanoapertures in metal films that beam and to nanoparticle antennas that enable efficient conversion of photons between spatial modes, or helicity channels. We present a polarimetric Fourier microscope as a new experimental tool to completely characterize the angle-dependent polarization-resolved scattering of single nanostructures. Polarimetry allows determining the full Stokes parameters from just six Fourier images. The degree of polarization and the polarization ellipse are measured for each scattering direction collected by a high NA objective. We showcase the method on plasmonic bullseye antennas in a metal film, which are known to beam light efficiently. We find rich results for the polarization state of the beamed light, including complete conversion of input polarization from linear to circular and from one helicity to another. In addition to uncovering new physics for plasmonic groove antennas, the described technique projects to have a large impact in nanophotonics, in particular towards the investigation of a broad range of phenomena ranging from photon spin Hall effects, polarization to orbital angular momentum transfer and design of plasmon antennas.
منابع مشابه
Local and anisotropic excitation of surface plasmon polaritons by semiconductor nanowires.
We demonstrate a novel functionality of semiconductor nanowires as local sources for surface plasmon polaritons (SPPs). Photoexcited semiconductor nanowires decay non-radiatively exciting SPPs when they are on top of a metallic surface. We have investigated the anisotropic excitation of SPPs by nanowires by placing individual InP nanowires inside gold bullseye gratings. The gratings serve to co...
متن کاملAnalysis of Aperture Coupled Microstrip Patch Antennas with a Superstrate Using the Space Domain Closed-Form Green`s Functions
Analysis of aperture-coupled microstrip antennas with a superstrate using space domain closed form Green's functions is presented. Integral equations are derived from applying the boundary conditions on the radiating patch, across the aperture, and on the microstrip feedline. The computation of space domain green's functions is performed using the closed-form. The solution of the integral equat...
متن کاملAnalysis of Aperture Coupled Microstrip Patch Antennas with a Superstrate Using the Space Domain Closed-Form Green`s Functions
Analysis of aperture-coupled microstrip antennas with a superstrate using space domain closed form Greens functions is presented. Integral equations are derived from applying the boundary conditions on the radiating patch, across the aperture, and on the microstrip feedline. The computation of space domain greens functions is performed using the closed-form. The solution of the integral equatio...
متن کاملWireless communication system via nanoscale plasmonic antennas
Present on-chip optical communication technology uses near-infrared light, but visible wavelengths would allow system miniaturization and higher energy confinement. Towards this end, we report a nanoscale wireless communication system that operates at visible wavelengths via in-plane information transmission. Here, plasmonic antenna radiation mediates a three-step conversion process (surface pl...
متن کاملPlanar Antenna-Coupled Bolometers for CMB Polarimetry
Antenna-coupled detectors provide all the functions required of a CMB polarimeter, including beam formation, spectral band definition, and polarization analysis. Planar antennas are fully lithographed devices that do not require coupling optics, and thus readily scale to the production of large focal plane arrays. Antennas coupled to direct detectors such as transitionedge bolometers can realiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015